Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Fire blight is a devastating disease affecting pome fruit trees that is caused by Erwinia amylovora and leads to substantial annual losses worldwide. While antibiotic-based management approaches like streptomycin can be effective, there are concerns over evolved resistance of the pathogen and non-target effects on beneficial microbes and insects. Using microbial biological control agents (mBCAs) to combat fire blight has promise, but variable performance necessitates the discovery of more effective solutions. Here we used a niche-based predictive framework to assess the strength of priority effects exerted by prospective mBCAs, and the mechanisms behind growth suppression in floral nectar. Through in vitro and in vivo assays, we show that antagonist impacts on nectar pH and sucrose concentration were the primary predictors of priority effects. Surprisingly, overlap in amino acid use, and the degree of phylogenetic relatedness between mBCA and Erwinia did not significantly predict pathogen suppression in vitro, suggesting that competition for limited shared resources played a lesser role than alterations in the chemical environment created by the initial colonizing species. We also failed to detect an association between our measures of in vitro and in vivo Erwinia suppression, suggesting other mechanisms may dictate mBCA establishment and efficacy in flowers, including priming of host defenses.more » « less
-
Many discoveries in the life sciences have been made using material from living stock collections. These collections provide a uniform and stable supply of living organisms and related materials that enhance the reproducibility of research and minimize the need for repetitive calibration. While collections differ in many ways, they all require expertise in maintaining living organisms and good logistical systems for keeping track of stocks and fulfilling requests for specimens. Here, we review some of the contributions made by living stock collections to research across all branches of the tree of life, and outline the challenges they face.more » « less
-
Abstract Yeasts are ubiquitous in temperate forests. While this broad habitat is well‐defined, the yeasts inhabiting it and their life cycles, niches, and contributions to ecosystem functioning are less understood. Yeasts are present on nearly all sampled substrates in temperate forests worldwide. They associate with soils, macroorganisms, and other habitats and no doubt contribute to broader ecosystem‐wide processes. Researchers have gathered information leading to hypotheses about yeasts' niches and their life cycles based on physiological observations in the laboratory as well as genomic analyses, but the challenge remains to test these hypotheses in the forests themselves. Here, we summarize the habitat and global patterns of yeast diversity, give some information on a handful of well‐studied temperate forest yeast genera, discuss the various strategies to isolate forest yeasts, and explain temperate forest yeasts' contributions to biotechnology. We close with a summary of the many future directions and outstanding questions facing researchers in temperate forest yeast ecology. Yeasts present an exciting opportunity to better understand the hidden world of microbial ecology in this threatened and global habitat.more » « less
An official website of the United States government

Full Text Available